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Abstract

The research project investigated foundational models of contracts in a higher-order
world of programming. The primary thrust of the work explored the meaning of contracts.
We focused on three questions. First, we determined what it means for a first-class function
or object to satisfy a contract. Second, we worked out when it is correct for a contract mon-
itoring system to blame a component for violating a contract. We could show that existing
contract systems may point to an innocent component and thus send a programmer on a wild
goose chase. Third, we established criteria for the completeness of monitoring systems. Us-
ing a model, we were able to demonstrate the completeness of one semantics for contract
monitors.

We used our primary model to explore designs for the parallel execution of contracts but
without reaching a truly satisfactory answer.

The secondary research project explored affine type systems as ”protocol contracts” and
the use of behavioral contracts to connect an affine code base to libraries from conventional
languages. The result of this work is a design for a practical, ML-style programming lan-
guage with an affine type system and with a contract-based mechanism for integrating exist-
ing libraries.

1 Contracts in a Higher-order World
Over the past 30 years behavioral software contracts have become a popular tool. The purpose
of a contract is to restrict a function (or method) signature beyond what the language’s type
system permits. A run-time system monitors contracts; when violations are discovered they are
reported; an attempt is made to assign blame to the guilty party to the contract; and an exception
is signaled to repair/prevent further harm. Contracts help programmers with testing, debugging,
maintenance tasks, and even dynamic systems control.



In contrast to programming languages, software contracts have been stuck in the 1980s. Over
the past 15 years, numerous concepts from higher-order functional languages have found their
way into mainstream languages, e.g., C# and Javascript. Most prominently, languages now come
with first-class functions, and programmers make extensive use of first-class objects and call-
backs. In addition, programming languages no longer have only static classes or modules; Clo-
jure, Fortress, and Scala come with traits, a mechanism for dynamically gluing together classes.

The purpose of this project was to explore software contracts in this higher-order world. We
started with an investigation of contracts for first-class program components, say, ML’s functorial
modules and Squeak’s first-class classes. Based on this work and our experience with contracts
for first-class functions, we then set out to explore the meaning of contracts and the correctness of
contract monitoring systems. Finally, we explored affine type systems and the use of behavioral
contracts to connect an affine code base to libraries from conventional languages.

2 Contract Basics
Like business world contracts, a software contract is an agreement between (usually two) par-
ties to live up to certain expectations. From the perspective of one party, a contract establishes
promises and obligations. That is, the party promises to deliver certain services, and it expects its
contract partner to deliver certain obligations. Syntactic contracts—also known as types—can be
checked at compile time—while behavioral contracts tend to require run-time checks.

Here is a concrete example. A module may export a function F from integers to integers.
Now suppose the module wishes to add that F really promises to return a prime number and that
is always to be applied to prime numbers. The type systems of current programming languages
cannot check that F is always applied to prime numbers and that it always produces one. Hence
the module interface contains code to check these additional expectations.

For first-order contracts, it is straightforward to determine when a party violates the agree-
ment. As soon as the “flat” value enters the module, the contract system checks whether it satisfies
its obligation. If the value fails this test, the client module—that is, the caller of the function or
method—is blamed. Conversely, when the function returns a value, the contract monitoring sys-
tem checks whether the answer is “as promised.” Naturally, if the answer fails the test, the server
module—that is, the callee—is blamed.

None of these ideas scale to higher-order programming constructs. Contracts in this world are
about entire functions, objects, classes, or modules. For example, if a module exports a numerical
differential operator, its type says that it maps functions on the real numbers to the same class of
functions. One possible contract may state that the resulting function computes an approximation
to the slope of the first one for each argument. By Rice’s theorem, it is simply impossible to check
such a contract all at once. Worse, even if the contract just samples a small number of points,
we are facing the central problems of such contracts: they call unknown methods or functions,
and doing so comes with all kinds of problems. Lastly, when systems dynamically compose
classes or modules, a contract monitor does not even know the parties to a contract at compile
time—meaning it doesn’t know whom to blame when something goes wrong.
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3 Contracts for First-class Components
With Strickland (PhD, degree expected June 2012), Felleisen explored contracts for languages
with first-class modules and first-class classes.

Results: DSL 2009, IFL 2009, DSL 2010

They were able to design contract monitors that track the obligations of contract parties, even in
systems where contract parties are loaded at run-time and when obligations are created dynami-
cally. The basic idea is to abstract such components implicitly over their partners and to ensure
that the information follows higher-order values as they flow through the system. The complex-
ity of these arrangements naturally raised the questions of when contract monitoring systems are
correct.

4 Correct Contract Systems
Dimoulas (PhD, degree expected December 2012) and Felleisen investigated this central question
for the entire project period. Their major results greatly clarified the correctness question and
exposed problems in practical systems.

Results: TOPLAS 2012 (submitted in 2010), POPL 2011, ESOP 2012, PPDP 2009

The purpose of a contract monitoring system is to catch mistakes. As soon as component in a
systems fails to live up to expectations, the overall system should know about the failure so that
it can take corrective action. The simplest action is to stop the system and to inform the producer
of the failing component about the problem. Doing so should help the producer find the source
of the problem. Alternatively, the system maintainer may wish to replace the faulty component
with a different one that promises to satisfy the same expectations.

Given this purpose description, it is critical that contract systems do not blame the wrong
component. Conversely, the monitoring system must not open “secret” channels between com-
ponents over which “bad” values can flow from one component to another. Otherwise such “bad”
values may eventually break a contract but once again, the monitoring may blame the wrong
component. In short, correct blame is economically the central element for a monitoring system.

The work of Dimoulas and Felleisen establishes formal criterion for judging contract mon-
itoring systems for higher-order languages. In addition, they provide a proof method to show
that a contract system satisfies this central criterion. Using this framework, they were able to
show that two of three existing semantics for contract monitoring systems are wrong. That is, an
implementation according to these semantics may blame random “by stander” modules and may
thus send the programmer or system maintainer on a wild goose chase. Conversely, the two of
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them were able to repair an existing semantics so that it blames only “guilty” modules. Further-
more, their framework suggests a natural refinement of this semantics that implements contracts
more efficiently than other systems. They failed, however, in their attempt to produce an effective
parallel implementation of contracts. That is, the issue of parallelization of contracts remains an
open problem.

5 Practical Affine Types from Contracts
Tov (PhD, defense scheduled: 9 February 2012) and Pucella focused on affine type systems and
the use of dynamic contracts to link affine software components into a system of components
written in conventional languages.

Results: ESOP 2010, POPL 2011, OOPSLA 2011

An affine type is a syntactic contract on resources such as pointers, file handles, or network
connections. With affine types, a programming language can for example check at compile time
whether a component hangs to pointers contrary to promises. To build a practical programming
language with affine types, we need to connect a kernel language with pragmatic libraries, and we
must do so in a way that does not violate the invariants of the affine type system. Tov and Pucella
were able to show that Findler and Felleisen’s higher-order dynamic contracts can overcome the
impedance mismatch.

The result of this work is a design for a practical, ML-style programming language with an
affine type system and with a contract-based mechanism for integrating existing libraries.
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